NuSTAR X-ray instrument to home in on the mysteries of space we can't quite see now.
A new space telescope due to launch Wednesday aims to shed a bright light on some of the darkest and most mysterious parts of the universe.
NASA's Nuclear Spectroscopic Telescope Array (NuSTAR)
spacecraft is set to launch at 11:30 a.m. EDT from an Orbital Sciences
Pegasus XL rocket to be carried aloft by a carrier plane from the
Kwajalein Atoll in the Pacific Ocean.
An artist's concept of NuSTAR on orbit. NuSTAR has two identical optics modules in order to increase sensitivity. The background is an image of the galactic center obtained with the Chandra X-ray Observatory. |
About seven days after the spacecraft reaches orbit, it will extend a 33-foot (10-meter) mast to separate two light-collecting X-ray optic units to a focal point where a camera will be placed. Each of these optics units contains 133 nested layers of glass intended to catch as much light as possible, and to produce the precise geometry to deflect light rays to exactly the right point at the other end of the long mast.
The instrument is designed to home in on the volatile, energetic
areas around black holes and the leftovers from stellar supernova
explosions. [ Gallery: NASA's Black Hole Hunting Space Telescope ]
While black holes themselves
are invisible (they are regions where gravity is so strong even light
cannot escape), the areas around them are often exceptionally bright, as
mass is lured in on its way to being swallowed, and gives up some of
its energy in the form of heat and light.
"It's the innermost orbits before the material plunges and is lost forever from view that we're looking at," said NuSTAR 's principal investigator, Fiona Harrison of Caltech, during a Monday news briefing.
By looking at these intense regions, scientists hope to better
understand the formation of the extremely large black holes thought to
inhabit most galaxies. The Milky Way itself is thought to host a
supermassive black hole 4 million times the mass of the sun in its
center, though astronomers have a tough time gathering precise data from
this region; this, too, NuSTAR aims to improve.
"We can put this puzzle together, understanding how the black holes
and the galaxies grow together and influence one another," Harrison
said.
NuSTAR isn't the first X-ray space telescope ever launched, but it
treads new ground compared to NASA's Chandra X-ray Space Telescope and
Europe's XMM-Newton, both of which also observe in the short-wavelength
X-ray range of light.
"NuSTAR operates at X-ray energies that are higher than Chandra or
XMM-Newton, so by having NuSTAR we can cover a much broader region of
the X-ray spectrum," Harrison said. "NuSTAR is really synergistic with
these other X-ray telescopes, but it will be the first to extend
sensitivity into the high-energy X-ray band. We can study regions that
are hotter, where particles are accelerated very close to the speed of
light."
The school bus-size NuSTAR cost about $165 million, and is one of NASA's relatively low-cost Small Explorer missions.
No comments:
Post a Comment